
15.5 | Damped Oscillations

Learning Objectives

By the end of this section, you will be able to:

• Describe the motion of damped harmonic motion

• Write the equations of motion for damped harmonic oscillations

• Describe the motion of driven, or forced, damped harmonic motion

• Write the equations of motion for forced, damped harmonic motion

In the real world, oscillations seldom follow true SHM. Friction of some sort usually acts to dampen the motion so it dies
away, or needs more force to continue. In this section, we examine some examples of damped harmonic motion and see
how to modify the equations of motion to describe this more general case.

A guitar string stops oscillating a few seconds after being plucked. To keep swinging on a playground swing, you must
keep pushing (Figure 15.24). Although we can often make friction and other nonconservative forces small or negligible,
completely undamped motion is rare. In fact, we may even want to damp oscillations, such as with car shock absorbers.

Figure 15.24 To counteract dampening forces, you need to
keep pumping a swing. (credit: Bob Mical)

Figure 15.25 shows a mass m attached to a spring with a force constant k. The mass is raised to a position A0 , the initial

amplitude, and then released. The mass oscillates around the equilibrium position in a fluid with viscosity but the amplitude
decreases for each oscillation. For a system that has a small amount of damping, the period and frequency are constant and
are nearly the same as for SHM, but the amplitude gradually decreases as shown. This occurs because the non-conservative
damping force removes energy from the system, usually in the form of thermal energy.
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Figure 15.25 For a mass on a spring oscillating in a viscous fluid, the
period remains constant, but the amplitudes of the oscillations decrease due
to the damping caused by the fluid.

Consider the forces acting on the mass. Note that the only contribution of the weight is to change the equilibrium position,
as discussed earlier in the chapter. Therefore, the net force is equal to the force of the spring and the damping force ⎛

⎝FD
⎞
⎠ . If

the magnitude of the velocity is small, meaning the mass oscillates slowly, the damping force is proportional to the velocity
and acts against the direction of motion ⎛

⎝FD = −bv⎞
⎠ . The net force on the mass is therefore

ma = −bv − kx.

Writing this as a differential equation in x, we obtain

(15.23)md2 x
dt2 + bdx

dt + kx = 0.

To determine the solution to this equation, consider the plot of position versus time shown in Figure 15.26. The curve

resembles a cosine curve oscillating in the envelope of an exponential function A0 e−αt where α = b
2m . The solution is

(15.24)
x(t) = A0 e

− b
2mt

cos⎛
⎝ωt + ϕ⎞

⎠.

It is left as an exercise to prove that this is, in fact, the solution. To prove that it is the right solution, take the first and second
derivatives with respect to time and substitute them into Equation 15.23. It is found that Equation 15.24 is the solution
if

ω = k
m − ⎛

⎝
b

2m
⎞
⎠

2
.

Recall that the angular frequency of a mass undergoing SHM is equal to the square root of the force constant divided by the
mass. This is often referred to as the natural angular frequency, which is represented as

(15.25)ω0 = k
m.

772 Chapter 15 | Oscillations

This OpenStax book is available for free at http://cnx.org/content/col12031/1.10



The angular frequency for damped harmonic motion becomes

(15.26)
ω = ω0

2 − ⎛
⎝

b
2m

⎞
⎠

2
.

Figure 15.26 Position versus time for the mass oscillating on a spring in a viscous fluid.
Notice that the curve appears to be a cosine function inside an exponential envelope.

Recall that when we began this description of damped harmonic motion, we stated that the damping must be small. Two
questions come to mind. Why must the damping be small? And how small is small? If you gradually increase the amount
of damping in a system, the period and frequency begin to be affected, because damping opposes and hence slows the back
and forth motion. (The net force is smaller in both directions.) If there is very large damping, the system does not even
oscillate—it slowly moves toward equilibrium. The angular frequency is equal to

ω = k
m − ⎛

⎝
b

2m
⎞
⎠

2
.

As b increases, k
m − ⎛

⎝
b

2m
⎞
⎠

2
becomes smaller and eventually reaches zero when b = 4mk . If b becomes any larger,

k
m − ⎛

⎝
b

2m
⎞
⎠

2
becomes a negative number and k

m − ⎛
⎝

b
2m

⎞
⎠

2
is a complex number.

Figure 15.27 shows the displacement of a harmonic oscillator for different amounts of damping. When the damping
constant is small, b < 4mk , the system oscillates while the amplitude of the motion decays exponentially. This system

is said to be underdamped, as in curve (a). Many systems are underdamped, and oscillate while the amplitude decreases
exponentially, such as the mass oscillating on a spring. The damping may be quite small, but eventually the mass comes
to rest. If the damping constant is b = 4mk , the system is said to be critically damped, as in curve (b). An example

of a critically damped system is the shock absorbers in a car. It is advantageous to have the oscillations decay as fast
as possible. Here, the system does not oscillate, but asymptotically approaches the equilibrium condition as quickly as
possible. Curve (c) in Figure 15.27 represents an overdamped system where b > 4mk. An overdamped system will

approach equilibrium over a longer period of time.
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15.5

Figure 15.27 The position versus time for three systems consisting of a mass and a spring in a

viscous fluid. (a) If the damping is small ⎛
⎝b < 4mk⎞

⎠ , the mass oscillates, slowly losing amplitude as

the energy is dissipated by the non-conservative force(s). The limiting case is (b) where the damping is
⎛
⎝b = 4mk⎞

⎠ . (c) If the damping is very large ⎛
⎝b > 4mk⎞

⎠ , the mass does not oscillate when displaced,

but attempts to return to the equilibrium position.

Critical damping is often desired, because such a system returns to equilibrium rapidly and remains at equilibrium as well.
In addition, a constant force applied to a critically damped system moves the system to a new equilibrium position in the
shortest time possible without overshooting or oscillating about the new position.

Check Your Understanding Why are completely undamped harmonic oscillators so rare?

15.6 | Forced Oscillations

Learning Objectives

By the end of this section, you will be able to:

• Define forced oscillations

• List the equations of motion associated with forced oscillations

• Explain the concept of resonance and its impact on the amplitude of an oscillator

• List the characteristics of a system oscillating in resonance

Sit in front of a piano sometime and sing a loud brief note at it with the dampers off its strings (Figure 15.28). It will
sing the same note back at you—the strings, having the same frequencies as your voice, are resonating in response to the
forces from the sound waves that you sent to them. This is a good example of the fact that objects—in this case, piano
strings—can be forced to oscillate, and oscillate most easily at their natural frequency. In this section, we briefly explore
applying a periodic driving force acting on a simple harmonic oscillator. The driving force puts energy into the system at a
certain frequency, not necessarily the same as the natural frequency of the system. Recall that the natural frequency is the
frequency at which a system would oscillate if there were no driving and no damping force.
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